z-logo
open-access-imgOpen Access
Development of Smoothed Particle Hydrodynamics for Simulation of Flow and Contaminant Transport on Natural Urban Terrain and Streams
Author(s) -
Xin Yan Lye,
Akihiko Nakayama,
Zafarullah Nizamani
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/945/1/012009
Subject(s) - terrain , smoothed particle hydrodynamics , surface runoff , environmental science , flow (mathematics) , turbulence , geology , mechanics , physics , geography , ecology , cartography , biology
Smoothed Particle Hydrodynamics (SPH) method is proposed, as an alternative mesh-free approach to model all components of rainfall, surface runoff, fluid flow and contaminant transport with the representation of contaminant and fluid, as particles. By doing so, contaminant particles can be traced for the motion within runoff or fluid flow, even in the form of minute concentration which is difficult to render in conventional Eulerian grid methods. Weakly compressible SPH (WCSPH) is selected with cubic spline kernel, and the incorporation of Large Eddy Simulation (LES) representing turbulence effect. Various SPH diffusion formulations have been reviewed and selected. The selected SPH formulation for contaminant concentration is validated against analytical diffusion equation with boundary conditions of solid wall or free surface. The validated method is applied to calculate the overland flow and the contaminant transport on a model terrain and a real terrain geometry. The real terrain is a part of the city of Teluk Intan in Perak, Malaysia and is simulated using digital elevation model (DEM) data retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Water Body Dataset (ASTWBD) for ground elevation and channel surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here