
Permeable Reactive Concrete Using Recycled Waste Materials for Nutrient Contamination Removal in Urban Surface Runoff
Author(s) -
Guillermo Forero Cruz,
M. Lingad
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/943/1/012001
Subject(s) - surface runoff , stormwater , environmental science , urban runoff , infiltration (hvac) , environmental engineering , water quality , first flush , pollutant , waste management , materials science , chemistry , ecology , organic chemistry , engineering , composite material , biology
In recent years, stormwater control measures (SCMs) such as permeable concrete pavement have been experimentally investigated and used to manage hydrologic and water quality impacts of stormwater runoff. Research revealed the potential of permeable pavement in reducing and delaying peak flow rate, reducing runoff volume, and capturing heavy metals and other particulate-bound pollutants from stormwater runoff. However, few studies have evaluated the effects of permeable pavement on nutrients in stormwater runoff. This research aims to produce permeable reactive concrete (PRC) from waste fly ash, waste gypsum board and waste coco peat and to investigate its effectiveness in removing nutrient contamination present in stormwater or urban surface runoff. The raw materials underwent through granulation process to produce granulated filtering media (GFM). Cylindrical samples of PRC were then made and subjected to various physical and water quality tests. The use of GFM as partial coarse aggregates of PRC for urban surface runoff management and nutrient contamination removal has been tested and evaluated. After performing all the tests, the researchers concluded that GFM as partial coarse aggregates of PRC is effective due to the significant increase in infiltration rate of the entire sample compared to the traditional permeable concrete that has an average infiltration rate of 2-6 mm/s. The results in the water quality test revealed that PRC with GFM as partial coarse aggregates lessen the nitrate, phosphate, and ammonia that are present on urban surface runoff.