
Kinematics and dynamics of an incomplete circular wheel drive of an agricultural tractor
Author(s) -
Юрий Казаков,
В. И. Медведев,
V Batmanov,
В.Б. Павлов
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/935/1/012030
Subject(s) - tractor , traction (geology) , kinematics , tractive force , axle , stiffness , torque , moment of inertia , pendulum , slipping , structural engineering , tire balance , engineering , automotive engineering , physics , mechanical engineering , classical mechanics , thermodynamics , quantum mechanics
The disadvantage of wheeled tractors is soil compaction, slipping due to limited traction, low tangential force. Experimental studies of a tractor with incomplete circular wheel mover on stubble, sand and virgin snow showed an increase in cross-country ability, a decrease in skidding, an increase in traction, and an increase in productivity. The purpose of the study is to develop a methodology for kinematic and dynamic analysis of incompletely rounded wheel propellers with a built-in differential. The equation of motion of the wheel is obtained on the basis of two-stage overcoming by the wheel of a single threshold obstacle taking into account the longitudinal and radial stiffness of the tire, its deformation, air resistance in the tire. The main influence is provided by translational speed, wheel radius and radial stiffness, the moment of inertia of the wheel and the shoulder of the application of mass. Planetary gearbox proposed in which the shaft of the driving satellite is a bearing, while the radius of the gear is an order of magnitude smaller than the radius of the wheel. The direction of improvement of wheel mover, increasing their traction properties is justified.