
Isolation and Characterization of Cellulolytic Bacteria Diversity in Peatland Ecosystem and Their Cellulolytic Activities
Author(s) -
Ummi Mardhiah Batubara,
M Mardalisa,
S Suparjo,
Hasna Ul Maritsa,
E Pujianto,
M Herlini
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/934/1/012028
Subject(s) - bacteria , peat , biology , cellulose , botany , isolation (microbiology) , cellulase , bacillus (shape) , food science , chemistry , microbiology and biotechnology , ecology , biochemistry , genetics
Peatlands are terrestrial wetland ecosystems formed from piles of organic matter that decompose into organic deposits. Peat soil has a high potential to produce cellulose which, can be reused by cellulolytic bacteria. This study aims to find out the potential strain of cellulolytic bacteria isolated from peatland ecosystems. The method used was experimental, sequentially, the stages are isolation and screening for cellulolytic bacteria, quantitative testing of cellulolytic activity, characterizing the morphology and physiology of bacteria, and the identification of bacteria based on Bergey’s Manual of Determinative Bacteriology. The screening results obtained seven isolates of cellulolytic bacteria capable of hydrolysed cellulose on 1% Carboxy Methyl Cellulose (CMC) Agar Medium, namely SPS1, SPS2, SPS 3, SDG1, SDG 2, SPW1, and SPW4. Three of seven isolates obtained the highest cellulolytic index sequentially, namely SPS2 of 2.82, SPS3 of 2.65, and SDG1 of 2.47. The cellulolytic activity was indicated by the value of a halo zone around the colonies on 1 % CMC medium after being dripped with Congo red. The halo zone is an early indication to determine the ability of bacteria to decompose cellulose. Based on Bergey’s Manual of Determinative Bacteriology showed that the three isolates had the same characteristics as the genus Bacillus, Lactobacillus and Corynebacterium.