
Sea surface temperatures in the South China Sea as a natural thermostat to the rainfall over Borneo: preliminary results
Author(s) -
Yudha Setiawan Djamil,
Rosbintarti Kartika Lestari,
X Wang
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/925/1/012009
Subject(s) - environmental science , climatology , sea surface temperature , insolation , precipitation , thermostat , atmospheric sciences , meteorology , geology , geography , physics , thermodynamics
Community Climate System Model version 4 (CCSM4) simulated warmer sea surface temperatures (SSTs) in the South China Sea (SCS) for the mid-Holocene scenario compared to the pre-Industrial. Previous sensitivity experiments using the atmospheric component of the CCSM4, the Community Atmospheric Model version 4 (CAM4), showed that warmer SSTs in the SCS suppresses rainfall over Borneo, which is in-contrary to the effect of the stronger insolation over the island. In this study, we show that warmer SSTs in the SCS, as simulated in the CCSM4, is responding to a weaker low-level wind impacted by the stronger convectional rainfall over Borneo due to stronger insolation. These results suggest that warmer SSTs in the SCS might act as a negative feedback which damps the effect of the stronger insolation on rainfall changes over Borneo.