
Potential of papaya seeds as a heterogenous catalyst in biodiesel synthesis
Author(s) -
Iriany,
Taslim Taslim,
Okta Bani,
H L M Purba
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/912/1/012022
Subject(s) - en 14214 , biodiesel , catalysis , transesterification , methanol , biodiesel production , chemistry , nuclear chemistry , calcination , yield (engineering) , materials science , pulp and paper industry , organic chemistry , metallurgy , engineering
A biomass based low-cost catalyst production has been attempted. This study evaluated papaya seeds as the catalyst precursor for biodiesel synthesis. Dried papaya seed powder was calcined at 500°C for 3 hours to produce papaya seed ash. Then, papaya seed ash was applied as catalyst for transesterification of palm oil and methanol. Catalyst load and reaction time was varied. Papaya seed ash was analyzed by SEM-EDX and biodiesel physical properties was analyzed according to the European standards (EN 14214). SEM-EDX results indicated that papaya seed ash contains a number of minerals such as K 2 O, MgO and CaO which can function as catalysts in biodiesel synthesis. The produced biodiesel also met European standards. Highest biodiesel yield of 95.6% was obtained for reaction temperature of 60°C, reaction time of 2 hours, catalyst load of 2%, methanol to oil ratio of 12:1. Preliminary research revealed that PSA may be applied as a catalyst in biodiesel synthesis.