
Groundwater contamination risk assessment based on advection-dispersion equation
Author(s) -
Gelu Madear,
Camelia Madear
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/906/1/012043
Subject(s) - groundwater , environmental science , contamination , environmental remediation , aquifer , groundwater pollution , water resource management , water quality , surface water , point source pollution , pollution , environmental engineering , infiltration (hvac) , hydrology (agriculture) , nonpoint source pollution , geology , geography , ecology , geotechnical engineering , meteorology , biology
The consequences of contaminated groundwater can seriously affect sustainable development; present and future generations being seriously affected by inadequate drinking water quality, loss of water supply, degraded surface water systems, high remediation costs, more expenses for other water supplies, and likely health issues. Therefore, an effective way to protect groundwater resources is by assessing the risk of groundwater contamination. An assessment of groundwater pollution should be performed to determine the level of risk posed by soil and groundwater contamination and establish if remediation strategies are required to protect controlled waters from site-derived contamination. Furthermore, if remediation is deemed necessary, site-specific remedial targets should be derived. A case study is presented, where a Conceptual Site Model was derived based on a “Source-Pathway-Receptor” exposure mechanism using historical information. Primary sources of contamination at the site are residual contamination within the soil and groundwater, and samples were collected from the site and tested in the laboratory; the concentration of water samples was compared to Romanian Drinking Water Standards. The following potential migration pathways have been identified: Leaching from soil and Migration of contaminated groundwater. The Detailed Quantitative Risk Assessment (DQRA) has modelled the leaching of contaminants from the site via infiltration and vertical migration to the groundwater and subsequent lateral groundwater migration, with dilution and attenuation process active, to the compliance point, using Ogata-Banks equation. The results of this assessment indicate that the concentration of contaminants does not represent a significant risk to controlled waters.