Open Access
Characteristics of impregnated wood by nano silica from betung bamboo leaves
Author(s) -
Istie Rahayu,
Ary Pratama,
Wayan Darmawan,
Dodi Nandika,
Esti Prihatini
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/891/1/012019
Subject(s) - bamboo , durability , young's modulus , materials science , composite material , pulp and paper industry , engineering
Abstract, Sengon (Falcataria moluccana Miq.) as a fast-growing wood species that has low quality. Therefore, wood modification is needed to improve its wood qualities. The objective of this study was to analyse the effect of monoethylene glycol (MEG) and nano silica of betung bamboo leaves impregnation treatment on physical, mechanical properties and durability of sengon wood. 5-years-old Sengon wood from community forest, MEG and nano silica (average size = 436.16 nm) from betung bamboo leaves were used. The impregnation solutions were consisted of water treated (untreated), MEG, MEGSilika 0.5% and MEGSilika 1%. Impregnation process with 0.5 bar (60 minutes) vacuum and 2.5 bar (120 minutes) pressure. Physical properties (density and colour alteration), mechanical properties (Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and hardness) and durability against subterranean (Coptotermes curvignathus) attack. The results showed that the weight percent gain (WPG) and density of treated Sengon wood were increased as the nano silica concentration increased. While colour alteration (Δε) of treated samples were declining. Mechanical properties (MOE, MOR and hardness) were also improved. Durability based on laboratory tested against subterranean attack resulted that the percentage of termite mortality from the treated samples increased, while the percentage of weight loss decreased.