
The Use of Machine Learning for Accessing Landslide Susceptibility Class: Study Case of Kecamatan Pacet, Kabupaten Mojokerto
Author(s) -
Listyo Yudha Irawan,
Sumarmi Sumarmi,
Syamsul Bachri,
Damar Panoto,
Nabila,
Irfan Helmi Pradana,
Rahmad Faizal,
M M R Devy,
Widodo Eko Prasetyo
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/884/1/012006
Subject(s) - landslide , logistic regression , bivariate analysis , geology , cartography , statistics , geography , geotechnical engineering , mathematics
Kecamatan Pacet, Kabupaten Mojokerto is one of an area with many landslide events in East Java Province. As a mitigation effort, this research aimed to map the landslide susceptibility class distribution of the research area. This research applied a machine learning analysis technic which combined Frequency Ratio (FR) and Logistic Regression (LR) models to assess the landslide susceptibility class distribution. FR bivariate analysis is used to normalized the data and to identify the influence significancy on each class of triggering factors. LR multivariate analysis is applied to generate the landslide probability (susceptibility) and to show the influence significancy of each triggering factor to landslide events. There are 12 triggering factors to landslide used in this research, which is: TPI, TWI, SPI, slope, aspect, elevation, profile curvature, distance to drainage, geological unit, rainfall, land use, and distance to the road. This research has 383 landslides and 383 non-landslide events as the data sample based on field survey, BPBD Kabupaten Mojokerto, and Google Earth Pro imagery interpretation. The proportion of dataset training and testing is 70% and 30%, which generated from the data inventory. This research used ROC analysis to validate the landslide susceptibility model. The result showed that the landslide susceptibility model has an AUC value of 0.91, which indicated that the model has high accuracy.