z-logo
open-access-imgOpen Access
Analysis of Tectonic Plate Velocity Variations in the Sunda Strait Based on GPS Time-series Data
Author(s) -
Y Dhira,
Irwan Meilano,
D W Dudy
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/873/1/012084
Subject(s) - subduction , geology , seismology , global positioning system , plate tectonics , tectonics , interplate earthquake , eurasian plate , geodesy , convergent boundary , oceanic crust , telecommunications , computer science
Indonesia is an earthquake-prone country located in the junction of four tectonic plates, namely the Indo-Australian, Eurasian, Philippine, and Pacific. The convergent boundary between tectonic plates is also called a subduction zone that can produce great earthquakes in the future. One of the subduction zones in Indonesia is the Sunda Strait subduction zone which predicted can release a M7.8 earthquake. Previous research stated that there is a change in tectonic plate velocity after an earthquake ruptured. It is likely that this could happen in the Sunda Strait area which has experienced several large earthquakes. In this study, we conducted research to find out the information on the tectonic plate velocity changes in the Sunda Strait. We used Global Positioning System (GPS) time-series data provided by Indonesia Geospatial Information Agency (BIG). The time series data is used to calculate the earthquake displacement, the changes in GPS velocity of before and after earthquake, and the changes in velocity of each time interval. Our results show that the horizontal displacement due to the earthquake at all GPS stations ranged from 3.34 mm to 7.36 mm in the north-south direction and -27.45 mm to 0.18 mm in the east-west direction. Furthermore, the result of the changes in GPS velocity before and after an earthquake ranged from 2.25 mm/year to 12.60 mm/year and 1.80 mm/year to 13.35 mm/year. The pattern of change in velocity is likely due to post-seismic deformation from the 2012 Indian Ocean earthquake, the 2016 Sumatra earthquake, and also other tectonic factors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here