
The Use of Core & Log Anisotropy Parameters into Seismic Data Processing: A Case Study of Deep-Water Reservoir
Author(s) -
Madaniya Oktariena,
Wahyu Triyoso,
Dona Sita Ambarsari,
Sigit Sukmono,
Erlangga Septama,
Pongga Dikdya Wardaya,
B S Murdianto,
Rusalida Raguwanti,
R R Pratama
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/873/1/012038
Subject(s) - anisotropy , isotropy , seismic anisotropy , offset (computer science) , transverse isotropy , geology , core (optical fiber) , amplitude versus offset , amplitude , physics , optics , computer science , programming language
The seismic far-offset data plays important role in seismic subsurface imaging and reservoir parameters derivation, however, it is often distorted by the hockey stick effect due to improper correction of the Vertical Transverse Isotropy (VTI) during the seismic velocity analysis. The anisotropy parameter η is needed to properly correct the VTI effect. The anisotropy parameters of ε and δ obtained from log and core measurements, can be used to estimate the η values, however, the upscaling effects due to the different frequencies of the wave sources used in the measurements must be carefully taken into account. The objective is to get better understanding on the proper uses of anisotropy parameters in the the velocity analysis of deepwater seismic gather data. To achieve the objective, the anisotropy parameters from ultrasonic core measurements and dipole sonic log were used to model the seismic CDP gathers. The upscaling effects is reflected by the big difference of measured anisotropy values, in which the core measurement value is about 40 times higher than the log measurement value. The CDP gathers modelling results show that, due to the upscaling effect, the log and core-based models show significant differences of far-offset amplitude and hockey sticks responses. The differences can be minimized by scaling-down the log anisotropy values to core anisotropy values by using equations established from core – log anisotropy values cross-plot. The study emphasizes the importances of integrating anisotropy parameters from core and log data to minimize the upscaling effect to get the best η for the VTI correction in seismic velocity analysis.