
Preliminary Results: Probabilistic Non-Linear Method to Determine the Hypocenter Location in the Molucca Sea Collision Zone from BMKG Networks
Author(s) -
Gazali Rachman,
Bagus Jaya Santosa,
Supriyanto Rohadi,
Andri Dian Nugraha,
Shindy Rosalia
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/873/1/012026
Subject(s) - hypocenter , induced seismicity , seismology , geology , tectonics , collision , epicenter , focal mechanism , subduction , island arc , computer security , computer science
Molucca Sea collision zone is a region which has very complex geology and tectonic setting, producing high seismicity and volcanoes activities. In this study, we have determined hypocenter location around the region using local & regional network of Agency of Meteorology, Climatology, and Geophysics, Indonesia (BMKG). We used 1,647 events that recorded by 32 seismic stations. We repicked the P-and S-phase manually and have been succesfully determined ~17,628 P and ~17,628 S arrival times. The P- and S-arrival times are used to determine the hypocenter location by applying NonLinLoc method which estimating the probability density function (PDF) using the oct-tree importance sampling algorithm. Our preliminary results show that the seismicity beneath the Molucca Sea collision zone forming a double subduction pattern which is dipping westward under the Sangihe Arc, reaching a depth of ~ 600 km and eastward under the Halmahera Arc, reaching a depth of ~ 250 km. The seismicity pattern under the Sangihe Arc deepens to the north and the deep earthquake events increase in number. The seismicity is related to the Molucca Sea Plate which is dipping into west and east direction beneath Sangihe-Halmahera Arc. To have a further understanding of the complex tectonic activity in this area, our future work will focus on conducting a seismic tomographic inversion to determine the 3D seismic velocities structure around the Molucca Sea collision zone.