z-logo
open-access-imgOpen Access
Gravity Data Analysis Based on Optimum Upward Continuation Filter and 3D Inverse Modelling (Case Study at Sedimentary Basin in Volcanic Region Malang and Its Surrounding Area, East Java)
Author(s) -
Imam Setiadi,
Marjiyono,
Tumpal Bernhard Nainggolan
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/873/1/012008
Subject(s) - geology , sedimentary rock , basement , sedimentary basin , structural basin , volcano , geomorphology , inversion (geology) , sedimentary basin analysis , petrology , geophysics , geochemistry , civil engineering , engineering
The study on the fore-arc sedimentary basin for hydrocarbon exploration is rare because of the more complicated geological structures, and conventional seismic methods cannot optimally penetrate the rock layers as there are many volcanic and limestone rocks. One of the natural resources potential in the Southern part of the East Java region, especially in Malang and its surrounding areas is the possibility of hydrocarbons in the fore-arc basin, so research is needed to know the existence of these sedimentary basins. The gravity method is one of the geophysical methods used to assess sedimentary basins based on physical parameters of mass density. The aims of this research are to delineate the sedimentary sub-basin, to find out its structure pattern, interpret subsurface geological and basement configuration. The data analysis approach used in this study involves spectral analysis, upward continuation filter, and 3D inverse modeling. The maximum height for the optimum upward continuation filter is 3000 m, which results in regional and residual anomalies. There were five sedimentary sub-basins identified based on residual gravity anomaly, and the gravity anomalies can also detect structure patterns such as basement high, lineament, and fault pattern. The bedrock is supposed as an intermediate igneous rock with a mass density of around 2.7 gr/cc according to the results of 3D inverse modeling. Deposition from bottom to upward is Mandalika, Nampol, and Wonosari Formations and completed by the uppermost are quaternary volcanic rocks. The inversion modeling results show that the Malang and surrounding areas have thick sedimentary rocks covered by volcanic deposits, which is impressive for further investigation to explore the possibility of the hydrocarbon existence in these areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here