
Effect of solidity on the dynamic behaviour of the Darrieus turbine with leading-edge protuberance
Author(s) -
U Lokesh,
N Kirthika,
K Madhu Madhan,
C B Maheswaran,
S. Ramaswami,
S. Nadaraja Pillai
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/850/1/012038
Subject(s) - solidity , turbine , vibration , vortex , aeroelasticity , tip speed ratio , leading edge , physics , amplitude , structural engineering , mechanics , acoustics , engineering , aerodynamics , optics , computer science , programming language , thermodynamics
The dynamic behaviour of the straight–type Darrieus turbine with leading-edge protuberance (LEP) was analysed under various solidity ratios at several tip speed ratios through experiments. The Darrieus turbine is a type of Vertical Axis Wind Turbine (VAWT) which uses wind energy to generate electricity. This type of turbine was subjected to vortex-induced and buffeting types of vibrations. These vibrations were more sensitive to the number of blades and tip speed ratios. Based on the experimental measurements, the results revealed that, at a low tip speed ratio, the four-bladed turbine exhibits lesser vortex-induced vibrations than those of the three and five-bladed turbines. However, at a high tip speed ratio, the three-bladed configuration operates well against the vortex-induced vibrations. In the case of buffeting, a three-bladed turbine diminishes the dynamic oscillations at both low and high tip speed ratios, whereas the four and five-bladed turbines induce dynamic oscillations at slightly higher amplitudes. However, the amplitude of buffeting is smaller than those of vortex-induced vibrations.