
Treatment of Al-Muthanna Petroleum Refinery Wastewater by Electrocoagulation Using a Tubular batch Electrochemical Reactor
Author(s) -
Ghazi Faisal Naser,
Thamer J. Mohammed,
Ali H. Abbar
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/779/1/012094
Subject(s) - electrocoagulation , chemical oxygen demand , wastewater , effluent , oil refinery , pulp and paper industry , chemistry , refinery , batch reactor , anode , electrochemistry , nuclear chemistry , environmental science , environmental engineering , electrode , catalysis , biochemistry , organic chemistry , engineering
An electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm -2 ), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied. Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase in NaCl concentration results in a decline in the COD removal efficiency. Using a pH value higher or lower than 7 causes a lowering of the COD removal efficiency. A current density of 15mA/cm 2 , NaCl concentration of 1g/l, and pH value of 7 were found to be the best operating conditions in which COD removal efficiency of 95.3% was achieved at a treatment time 45 minutes with an energy consumption of 27.78kWh/kg COD. Based on these conditions, a COD value of 20 ppm could be obtained, which is below the standard limit for discharging petroleum refinery effluents.