
Spatial dynamic of land surface temperature in ciliwung watershed
Author(s) -
Muhammad Reza Aditya,
Mangapul Parlindungan Tambunan,
F. Sri Hardiyanti Purwadhi
Publication year - 2021
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/683/1/012096
Subject(s) - normalized difference vegetation index , watershed , elevation (ballistics) , environmental science , urbanization , vegetation (pathology) , spatial distribution , enhanced vegetation index , physical geography , remote sensing , hydrology (agriculture) , geography , vegetation index , climate change , geology , ecology , geometry , mathematics , computer science , medicine , oceanography , geotechnical engineering , pathology , machine learning , biology
Land surface temperature (LST) is one of critical element in urban climatology study, especially on urban heat island (UHI) mitigation and water balance. Urbanization in Ciliwung watershed continuously erodes open areas and considerably significant affect the surface temperature within watershed area. Therefore, the purpose of the study is to explore the potential contribution of land surface rising between elevations, vegetation and built-up index. Landsat 8/OLI satellite images use to derive LST, normalize differences vegetation index (NDVI) and normalized differences built-up index (NDBI) in study area on 2014 and 2018. Furthermore, elevation derive from DEMNAS raster provide by Geospatial Information Agency (BIG). In summary, there were LST increases from means temperature from 28.52 Celsius (2014) to 29.10 Celsius (2018) along with land cover changes (LCC). Meanwhile, LST spatial distribution is very closely related to the distribution of NDVI and NDBI. Statistical test results show high correlation (R-squared = 0.89 - 0.91) between LST, elevation, NDVI and NDVI. This indicates elevation, NDVI and NDBI factor play a significant role in LST dynamics.