
Reducing residual normal moveout by globally optimized generalized moveout approximation in vertically transverse isotropy (VTI) media
Author(s) -
Kertanah,
Mohammad Syamsu Rosid,
Humbang Purba
Publication year - 2020
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/538/1/012067
Subject(s) - normal moveout , transverse isotropy , anisotropy , residual , isotropy , offset (computer science) , geology , mathematical analysis , mathematics , optics , physics , computer science , algorithm , programming language
The anisotropic phenomenon in wave propagation has been widely recognized on various scales. Knowledge of anisotropic effects is essential for interpretation and processing of seismic data. The existence of anisotropy leads to the moveout of nonhyperbolic even in a homogenous layer. A transversely isotropic medium with a vertical symmetry axis (VTI) is a reasonable approximation of horizontally layered anisotropic medium. The approximation of travel time is important for reducing the residual normal moveout of layered VTI media. The aim of this study is to develop globally optimized generalized moveout approximation in reducing residual normal moveout in VTI media. A comparative analysis was carried out to recent method for given an ellipticity parameter (0 ≤ η ≥ 0.5 ) and wide offset depth to ratio (0 to 4). The result shows that the globally optimized generalized moveout approximation is better in reducing residual moveout at large offsets with a stronger anellipticity parameter than existing methods. This is essential for reducing the accumulation of error especially for deeper substructures.