z-logo
open-access-imgOpen Access
Pseudo-3D seismic construction using tau-p transform interpolation
Author(s) -
Novrizal,
Agus Riyanto,
Eka Yulianto,
Faizah Abdullah
Publication year - 2020
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/538/1/012020
Subject(s) - interpolation (computer graphics) , construct (python library) , geology , transformation (genetics) , seismology , computer science , offset (computer science) , domain (mathematical analysis) , seismic inversion , seismic to simulation , algorithm , geometry , artificial intelligence , mathematics , azimuth , image (mathematics) , mathematical analysis , biochemistry , chemistry , gene , programming language
Three dimensional (3D) seismic imaging is very important in hydrocarbon exploration. However, 3D seismic data acquisition costs more expensive than 2D seismic data acquisition. Therefore, the explorations are mostly done with some 2D seismic lines and requiring some interpolation method to construct the 3D seismic model called Pseudo-3D Seismic. In other word, the 3D model depends much on the interpolation process for a more reliable result. There have been many interpolation methods used to construct the 3D seismic model. Tau-P Transform is one of the methods that can be used to construct a 3D seismic model. It has been used to reconstruct seismic data and fill the near-offset gap in marine seismic data for decades. In this research, the method is done by having the crossline of some 2D seismic lines and performing the transformation from t-x domain to the tau-p domain. After the transformation, by inverse-transformation from tau-p to t-x domain, we might perform interpolation along the line to construct more traces with regular and near spacing. This method can be performed to all crosslines and construct Pseudo-3D Seismic. The results show constructed crosslines with well-lineated layers. The crosslines show developed layers are like those of the inline implying that the interpolation successfully construct the layers based on the inline.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here