
Formation of non-oxygenated phase of bio-oil produced by copyrolysis of corn cobs and polypropylene plastic using zeolite catalysts at low heating rate
Author(s) -
Dijan Supramono,
Aisyah Fadhlillah,
Mohammad Nasikin
Publication year - 2020
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 26
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/460/1/012021
Subject(s) - pyrolysis , catalysis , fraction (chemistry) , chemical engineering , chemistry , pyrolysis oil , zeolite , polypropylene , oxygenate , yield (engineering) , wax , carbon fibers , biomass (ecology) , organic chemistry , cracking , mass fraction , materials science , composite material , agronomy , composite number , engineering , biology
Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate (thermal slow co-pyrolysis) has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. Catalytic fast co-pyrolysis has been commonly used to improve bio-oil yield and to improve non-oxygenated fraction of bio-oil. However, the catalytic fast co-pyrolysis is unable to obtain separate non-oxygenated fraction of bio-oil. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate to undertake catalytic slow co-pyrolysis in order to obtain synergistic effect of non-oxygenated fraction of bio-oil while obtaining separate non-oxygenated fraction of bio-oil. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5 °C/min and maximum temperature of 500 °C. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. The experiment involved 3 catalytic configurations, i.e., no catalyst, ZSM5-38 and ZSM5-70, in which 38 and 70 represents the mole ratio of SI/Al in the catalysts. The results show that in slow co-pyrolysis of biomass-PP, the use of zeolite catalyst with high acidity suppressed the pyrolysis of PP to form wax and reduced bio-oil yield, and the synergistic effect was obtained as the co-pyrolysis used no catalyst and zeolite catalyst of ZSM5-70, while that using zeolite catalyst of ZSM5-38 reached negative synergistic effect. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated straight carbon chain with higher branches compared to those commercial fuels.