
Tensile strength and elongation analysis on nano cellulose Film Isolated from Sugarcane Bagasse
Author(s) -
Mochammad Yuwono,
Begum Fauziyah,
Isnaeni Isnaeni,
A. Nisak
Publication year - 2020
Publication title -
iop conference series. earth and environmental science
Language(s) - English
Resource type - Journals
eISSN - 1755-1307
pISSN - 1755-1315
DOI - 10.1088/1755-1315/456/1/012088
Subject(s) - cellulose , bagasse , crystallinity , hemicellulose , lignin , ultimate tensile strength , materials science , nano , elongation , hydrolysis , chemistry , composite material , chemical engineering , nuclear chemistry , organic chemistry , pulp and paper industry , engineering
Nano cellulose was successfully isolated from sugarcane bagasse through sulphuric acid hydrolysis of sugarcane bagasse cellulose. Physically, Nano cellulose was transparent and broken white. The crystallinity index of sugarcane bagasse nano cellulose was 80.72%. The particle size of sugarcane bagasse nano cellulose was 225 nm. Delignification process in isolation was successfully showed by releasing peaks in 1239.3 and 1507.7. It show C-O-C vibration of aryl group in lignin and C=C aromatic ring in lignin respectively. Sugarcane bagasse cellulose shows peaks at 1720.2 that represent COOH and hemicellulose carboxylic groups, while the others were not found. The crystallinity index of Nano cellulose was 42.65%. Nano cellulose film prepared in several concentrations (3%, 6%, and 9%). Nano cellulose film also prepared with adding HPMC 2%. Nano cellulose film prepared in 9% concentration was too strict and broken easily. The tensile strength and elongation of Nano cellulose film that prepared in 3% + HPMC 2% and 6% + HPMC 2% were 3.177 Mpa, 10.93% and 3.315 Mpa dan 3.7% respectively.