z-logo
open-access-imgOpen Access
Using snapshot measurements to identify high-emitting vehicles
Author(s) -
Minghao Qiu,
J. BorkenKleefeld
Publication year - 2022
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ac5c9e
Subject(s) - snapshot (computer storage) , environmental science , computer science , database
Policy makers have long been interested in detecting ‘high-emitters’, a supposedly smallfraction of vehicles that make disproportionally large contributions to total fleet emissions. However, existing identification schemes often exclusively rely on snapshot measurements (i.e. emissions within less than a second), and thus simply identify vehicles with high instantaneous emissions, instead of vehicles with high average emissions over a driving period as regulated by emission standards. We design a comprehensive scheme to address this challenge by combining fleetwide remote sensing measurements with detailed second-by-second emission measurements from individual vehicles. We first determine the trip-average NO x emission rates of individual vehicles in a Euro-5 diesel fleet measured across European locations; this allows, second, to calculate the fraction and emission contributions of high-emitters based on trip-average emission. We demonstrate that the identification of high-emitters is quite uncertain as long as it is based on single snapshots only; but 80% of the high-emitters can be identified with over 75% precision with five or more repeated measurements of the same vehicle. Compared to the conventional detection schemes, our scheme can increase the identified high-emitters and associated emission reductions by over 140%. Our method is validated and shown to be superior to the conventional interpretation of snapshot measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here