z-logo
open-access-imgOpen Access
A 30 m global map of elevation with forests and buildings removed
Author(s) -
Laurence Hawker,
Peter Uhe,
Luntadila Paulo,
Jeison Sosa,
James Savage,
Chris Sampson,
Jeffrey Neal
Publication year - 2022
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ac4d4f
Subject(s) - elevation (ballistics) , digital elevation model , terrain , range (aeronautics) , remote sensing , computer science , environmental science , meteorology , cartography , geology , geography , mathematics , materials science , geometry , composite material
Elevation data are fundamental to many applications, especially in geosciences. The latest global elevation data contains forest and building artifacts that limit its usefulness for applications that require precise terrain heights, in particular flood simulation. Here, we use machine learning to remove buildings and forests from the Copernicus Digital Elevation Model to produce, for the first time, a global map of elevation with buildings and forests removed at 1 arc second (∼30 m) grid spacing. We train our correction algorithm on a unique set of reference elevation data from 12 countries, covering a wide range of climate zones and urban extents. Hence, this approach has much wider applicability compared to previous DEMs trained on data from a single country. Our method reduces mean absolute vertical error in built-up areas from 1.61 to 1.12 m, and in forests from 5.15 to 2.88 m. The new elevation map is more accurate than existing global elevation maps and will strengthen applications and models where high quality global terrain information is required.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here