
Catchment processes can amplify the effect of increasing rainfall variability
Author(s) -
Marc F. Müller,
Kevin Roche,
David Dralle
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ac153e
Subject(s) - environmental science , streamflow , drainage basin , hydrology (agriculture) , climate change , precipitation , water balance , spatial variability , geology , geography , meteorology , oceanography , statistics , cartography , geotechnical engineering , mathematics
By filtering the incoming climate signal when producing streamflow, river basins can attenuate—or amplify—projected increases in rainfall variability. A common perception is that river systems dampen rainfall variability by averaging spatial and temporal variations in their watersheds. However, by analyzing 671 watersheds throughout the United States, we find that many catchments actually amplify the coefficient of variation of rainfall, and that these catchments also likely amplify changes in rainfall variability. Based on catchment-scale water balance principles, we relate that faculty to the interplay between two fundamental hydrological processes: water uptake by vegetation and the storage and subsequent release of water as discharge. By increasing plant water uptake, warmer temperatures might exacerbate the amplifying effect of catchments. More variable precipitations associated with a warmer climate are therefore expected to lead to even more variable river flows—a significant potential challenge for river transportation, ecosystem sustainability and water supply reliability.