
US residential heat pumps: the private economic potential and its emissions, health, and grid impacts
Author(s) -
Thomas A. Deetjen,
L. J. Walsh,
Parth Vaishnav
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ac10dc
Subject(s) - heat pump , electrification , electricity , renewable heat , hybrid heat , environmental science , stock (firearms) , business , natural resource economics , climate change , environmental economics , economics , engineering , mechanical engineering , ecology , electrical engineering , heat exchanger , biology
To explore electrification as a climate change mitigation strategy, we study US residential heat pump adoption, given the current US housing stock. Our research asks (a) how the costs and benefits of heat pump adoption evolve with increased penetration, (b) what rate of heat pump adoption is economic given today’s housing stock, electric grid, energy prices, and heat pump technology, and (c) what effect changing policies, innovations, and technology improvements might have on heat pump adoption. We answer these research questions by simulating the energy consumption of 400 representative single-family houses in each of 55 US cities both before and after heat pump adoption. We use energy prices, CO 2 emissions, health damages from criteria air pollutants, and changes in peak electricity demand to quantify the costs and benefits of each house’s heat pump retrofit. The results show that 32% of US houses would benefit economically from installing a heat pump, and 70% of US houses could reduce emissions damages by installing a heat pump. We show that the potential for heat pump adoption varies depending on electric grid, climate, baseline heating fuel, and housing characteristics. Based on these results we identify strategic, technology, and policy insights to stimulate high heat pump adoption rates and deep electrification of the US residential heating sector, which reduces CO 2 emissions and the impacts of climate change.