
Global perspective on CO2 emissions of electric vehicles
Author(s) -
Alexandra Märtz,
Patrick Plötz,
Patrick Jochem
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/abf8e1
Subject(s) - greenhouse gas , electricity , renewable energy , environmental science , electricity generation , environmental economics , life cycle assessment , climate change mitigation , electric vehicle , global warming , battery (electricity) , production (economics) , battery electric vehicle , natural resource economics , climate change , economics , engineering , power (physics) , ecology , physics , macroeconomics , quantum mechanics , electrical engineering , biology
Plug-in electric vehicles (PEVs) are a promising option for greenhouse gas (GHG) mitigation in the transport sector - especially when the fast decrease in carbon emissions from electricity provision is considered. The rapid uptake of renewable electricity generation worldwide implies an unprecedented change that affects the carbon content of electricity for battery production as well as charging and thus the GHG mitigation potential of PEV. However, most studies assume fixed carbon content of the electricity in the environmental assessment of PEV and the fast change of the generation mix has not been studied on a global scale yet. Furthermore, the inclusion of up-stream emissions remains an open policy problem. Here, we apply a reduced life cycle assessment approach including the well-to-wheel emissions of PEV and taking into account future changes in the electricity mix. We compare future global energy scenarios and combine them with PEV diffusion scenarios. Our results show that the remaining carbon budget is best used with a very early PEV market diffusion; waiting for cleaner PEV battery production cannot compensate for the lost carbon budget in combustion vehicle usage.