
Is the efficacy of satellite-based inversion of SO2 emission model dependent?
Author(s) -
Nan Li,
Keqin Tang,
Yi Wang,
Jun Wang,
Wei Feng,
Haoran Zhang,
Hong Liao,
Jianlin Hu,
Xinping Long,
Chong Shi,
Xiaoli Su
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/abe829
Subject(s) - cmaq , inversion (geology) , weather research and forecasting model , environmental science , satellite , meteorology , aerosol , moderate resolution imaging spectroradiometer , air quality index , geostationary orbit , atmospheric sciences , mesoscale meteorology , climatology , remote sensing , geology , physics , paleontology , structural basin , astronomy
Satellite-based inverse modeling has the potential to drive aerosol precursor emissions, but its efficacy for improving chemistry transport models (CTMs) remains elusive because of its likely inherent dependence on the error characteristics of a specific CTM used for the inversion. This issue is quantitively assessed here by using three CTMs. We show that SO 2 emissions from global GEOS-Chem adjoint model and OMI SO 2 data, when combined with spatial variation of bottom-up emissions, can largely improve WRF-Chem and WRF-CMAQ forecast of SO 2 and aerosol optical depth (in reference to moderate resolution imaging spectroradiometer data) in China. This suggests that the efficacy of satellite-based inversion of SO 2 emission appears to be high for CTMs that use similar or identical emission inventories. With the advent of geostationary air quality monitoring satellites in next 3 years, this study argues that an era of using top-down approach to rapidly update emission is emerging for regional air quality forecast, especially over Asia having highly varying emissions.