z-logo
open-access-imgOpen Access
Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic
Author(s) -
Erin MacDonald,
Suzanne E. Tank,
Steven V. Kokelj,
Duane G. Froese,
Ryan H. S. Hutchins
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/abd971
Subject(s) - permafrost , geology , peat , dissolved organic carbon , thermokarst , arctic , organic matter , mineralization (soil science) , earth science , geochemistry , soil science , soil water , ecology , oceanography , biology
Organic matter, upon dissolution into the aqueous state as dissolved organic matter (DOM), can undergo mineralization by microbes. There has been increasing effort to characterize DOM released from thawing permafrost because it may perpetuate a permafrost carbon feedback. Permafrost-derived DOM often has a composition that can be highly susceptible to mineralization by microbes, but most studies to date that characterize permafrost-derived DOM have been limited to select regions, and tend to focus on a single type of permafrost (sometimes unspecified) that reflects a particular deposit type. Importantly, diversity in the nature of the deposit, formation of permafrost, and thaw modification processes leads to spatial and stratigraphic variability in its properties, but our understanding of variation in the composition of DOM derived from differing permafrost types (end-members) is poor. Here, we used ultrahigh-resolution mass spectrometry to characterize DOM composition derived from a series of permafrost end-member types that are commonly found within the thaw-vulnerable western Canadian Arctic, including: tills (glacially deposited), diamicton (thawed and remobilized material of mixed origin), lacustrine (lake basin sediments into which permafrost has aggraded), peat (partially decomposed organic material), and Yedoma (syngenetic silty loess) deposits. We identified marked variation in DOM composition among permafrost end-member types. Tills were compositionally dissimilar to all other permafrost end-members. Compounds unique to Yedoma were predominantly aliphatic, while compounds unique to peat, lacustrine, and diamicton spanned saturation and oxygenation gradients. All permafrost leachates were generally higher in aliphatics, lower in aromatics, and less oxygenated than active layer leachates. Compositional differences appear to reflect variation in permafrost parent materials, and particularly strong effects from past modification processes while in the unfrozen or thawed state. Constraining DOM composition and assessing its stratigraphic variability will become more pressing as the spatial and stratigraphic extent of thaw increases with future warming.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here