
Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record
Author(s) -
Martin Van Damme,
Lieven Clarisse,
Bruno Franco,
Mark A. Sutton,
J. W. Erisman,
Roy Wichink Kruit,
Margreet van Zanten,
Juliette HadjiLazaro,
Daniel Hurtmans,
Cathy Clerbaux,
PierreFrançois Coheur
Publication year - 2021
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/abd5e0
Subject(s) - environmental science , satellite , climatology , atmospheric sciences , air quality index , geography , meteorology , geology , aerospace engineering , engineering
Excess atmospheric ammonia (NH 3 ) leads to deleterious effects on biodiversity, ecosystems, air quality and health, and it is therefore essential to monitor its budget and temporal evolution. Hyperspectral infrared satellite sounders provide daily NH 3 observations at global scale for over a decade. Here we use the version 3 of the Infrared Atmospheric Sounding Interferometer (IASI) NH 3 dataset to derive global, regional and national trends from 2008 to 2018. We find a worldwide increase of 12.8 ± 1.3 % over this 11-year period, driven by large increases in east Asia (5.80 ± 0.61% increase per year), western and central Africa (2.58 ± 0.23 % yr −1 ), North America (2.40 ± 0.45 % yr −1 ) and western and southern Europe (1.90 ± 0.43 % yr −1 ). These are also seen in the Indo-Gangetic Plain, while the southwestern part of India exhibits decreasing trends. Reported national trends are analyzed in the light of changing anthropogenic and pyrogenic NH 3 emissions, meteorological conditions and the impact of sulfur and nitrogen oxides emissions, which alter the atmospheric lifetime of NH 3 . We end with a short case study dedicated to the Netherlands and the ‘Dutch Nitrogen crisis’ of 2019.