z-logo
open-access-imgOpen Access
Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations
Author(s) -
Daniel Cusworth,
Riley Duren,
A. K. Thorpe,
Eugene Tseng,
David R. Thompson,
Apratim Guha,
Sally Newman,
K. T. Foster,
Charles E. Miller
Publication year - 2020
Publication title -
environmental research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.37
H-Index - 124
ISSN - 1748-9326
DOI - 10.1088/1748-9326/ab7b99
Subject(s) - methane , environmental science , biogas , municipal solid waste , landfill gas , methane emissions , waste management , greenhouse gas , remote sensing , engineering , ecology , biology , geology
Solid waste management represents one of the largest anthropogenic methane emission sources. However, precise quantification of landfill and composting emissions remains difficult due to variety of site-specific factors that contribute to landfill gas generation and effective capture. Remote sensing is an avenue to quantify process-level emissions from waste management facilities. The California Methane Survey flew the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) over 270 landfills and 166 organic waste facilities repeatedly during 2016–2018 to quantify their contribution to the statewide methane budget. We use representative methane retrievals from this campaign to present three specific findings where remote sensing enabled better landfill and composting methane monitoring: (1) Quantification of strong point source emissions from the active face landfills that are difficult to capture by in situ monitoring or landfill models, (2) emissions that result from changes in landfill infrastructure (design, construction, and operations), and (3) unexpected large emissions from two organic waste management methods (composting and digesting) that were originally intended to help mitigate solid waste emissions. Our results show that remotely-sensed emission estimates reveal processes that are difficult to capture in biogas generation models. Furthermore, we find that airborne remote sensing provides an effective avenue to study the temporally changing dynamics of landfills. This capability will be further improved with future spaceborne imaging spectrometers set to launch in the 2020s.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here