z-logo
open-access-imgOpen Access
Development of broad-band high-reflectivity multilayer film for positron emission tomography system
Author(s) -
Jianbin Xu,
Quanquan Sun,
Zhihao Wu,
Guo Li,
Siwei Xie,
Qiu Huang,
Qiyu Peng
Publication year - 2018
Publication title -
journal of instrumentation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.741
H-Index - 84
ISSN - 1748-0221
DOI - 10.1088/1748-0221/13/09/p09016
Subject(s) - scintillator , materials science , lyso , optics , optoelectronics , wavelength , coating , nanotechnology , physics , detector
The use of non-ideal reflective materials and low-precision manual manufacturing technologies is a fundamental technical obstacle blocking the positron emission tomography (PET) systems from achieving better performances. We propose to address that long-standing obstacle with advanced multilayer dielectric coating technologies. We designed an broad-band multilayer high-reflectivity (HR) film that can be coated directly on the surface of ultra-precision polished lutetiumyttrium oxyorthosilicate (LYSO) scintillators. The film consists of 48 layers of TiO2/SiO2/HfO2 which are deposited on LYSO scintillator crystal alternately using the electron beam evaporation method. The overall thickness of the HR film is about 3μm. The HR film combines 3 quarter wavelength reflective films, with the central wavelengths of 365 nm, 430 nm and 570 nm respectively, to match the emission spectrum of the LYSO scintillator. The optical experimental results show that the HR film achieved an excellent average reflectivity of 99.50% at 8° incident angle for incident lights with wavelengths between 360 to 620 nm. The average reflectivity at 60° incident angle is higher than 90%. The results of the hardness experiments and the adhesive strength experiments show that the HR film has an excellent mechanical strength. The HR coating technology developed in this study is very attractive because it allows to "print" high-performance reflectors on a scintillator directly with high-precision, instead of manually gluing reflective films on the scintillator. Thus, we conclude that the HR film provides a viable solution to the long standing technical bottleneck that limits the development of high-performance detectors for advanced PET imaging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here