z-logo
open-access-imgOpen Access
Electric field effects on the dynamics of bubble detachment from an inclined surface
Author(s) -
Paolo Di Marco,
N. Morganti,
Giacomo Saccone
Publication year - 2015
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/655/1/012044
Subject(s) - mechanics , body orifice , electric field , bubble , curvature , optics , physics , classical mechanics , engineering , mechanical engineering , geometry , mathematics , quantum mechanics
An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here