
Research on Software Defect Prediction and Analysis Based on Machine Learning
Author(s) -
Xuemei Peng
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2173/1/012043
Subject(s) - machine learning , computer science , artificial intelligence , ensemble learning , software , key (lock) , online machine learning , software bug , eclipse , computational learning theory , data mining , algorithm , active learning (machine learning) , physics , computer security , astronomy , programming language
The defects of machine learning prediction technology can be more comprehensive and automatic learning model to find the defects in software has become the main method of defect prediction, selection and study of algorithm is the key to improve the accuracy and efficiency of machine learning. Comparing different machine learning defect prediction methods reveals that the algorithms have different advantages in different evaluation indicators, the use of these advantages and combining the stacking ensemble learning method in machine learning is put forward different prediction algorithm of prediction results. As software metrics and again the prediction model of software defect prediction combined machine learning algorithm is based on the experiment with the model of Eclipse, the data sets show the effectiveness of the model.