
Simulated design optimization of a prototype solid tank optical CT scanner for 3D radiation dosimetry
Author(s) -
Andy Ogilvy,
Steve Collins,
Warren Hare,
Michelle Hilts,
T Tuokko,
R Deardon,
Andrew Jirasek
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2167/1/012009
Subject(s) - scanner , dosimeter , dosimetry , detector , computer science , optics , nuclear medicine , artificial intelligence , physics , medicine
Optical computed tomography (CT) is one of the leading modalities for imaging gel dosimeters. There exist many prototype designs, as well as some commercial optical CT scanners that have showcased the value that gel dosimeters can provide to improve 3D dose verification for radiation treatments. However, due to factors including image accuracy, scan time, or demanding setup and maintenance there is currently no single scanner that has become a ubiquitous staple in a clinical setting. In this work, a prototype solid tank optical CT scanner is proposed that minimizes the need for a refractive index bath commonly found in optical CT systems. In addition to the design proposal, a ray-path simulator was created to optimize the design such that the solid tank geometry improves light collection across the detector array, maximizes the volume of the dosimeter scanned, and maximizes the dynamic range of the scanner.