
Variation of the elliptical Fermi surface for a two-dimensional electron gas with anisotropic mass
Author(s) -
Orion Ciftja
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2164/1/012023
Subject(s) - fermi gas , fermi surface , anisotropy , condensed matter physics , fermi energy , physics , fermi liquid theory , electron , kinetic energy , quantum oscillations , fermi gamma ray space telescope , effective mass (spring–mass system) , fermi level , classical mechanics , quantum mechanics
We consider a two-dimensional electron gas in the thermodynamic (bulk) limit. It is assumed that the system consists of fully spin-polarized (spinless) electrons with anisotropic mass. We study the variation of the shape of the expected elliptical Fermi surface as a function of the density of the system in presence of such form of internal anisotropy. To this effect, we calculate the energy of the system as well as the optimum ellipticity of the Fermi surface for two possible liquid states. One corresponds to the standard system with circular Fermi surface while the second one represents a liquid anisotropic phase with a tunable elliptical deformation of the Fermi surface that includes the state that minimizes the kinetic energy. The results obtained shed light on several possible scenarios that may arise in such a system. The competition between opposing tendencies of the kinetic energy and potential energy may lead to the stabilization of liquid phases where the optimal elliptical deformation of the Fermi surface is non-obvious and depends on the density as well as an array of other factors related to the specific values of various parameters that characterize the system.