
InRFNet: Involution Receptive Field Network for COVID-19 Diagnosis
Author(s) -
M Dhruv,
R Sai Chandra Teja,
Romila Devi,
Sanjeev Kumar
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2161/1/012064
Subject(s) - involution (esoterism) , covid-19 , receptive field , pneumonia , pattern recognition (psychology) , medicine , artificial intelligence , mathematics , computer science , pathology , disease , psychology , infectious disease (medical specialty) , neuroscience , consciousness
COVID-19 is an emerging infectious disease that has been rampant worldwide since its onset causing Lung irregularity and severe respiratory failure due to pneumonia. The Community-Acquired Pneumonia (CAP), Normal, and COVID-19 Computed Tomography (CT) scan images are classified using Involution Receptive Field Network from Large COVID-19 CT scan slice dataset. The proposed lightweight Involution Receptive Field Network (InRFNet) is spatial specific and channel-agnostic with Receptive Field structure to enhance the feature map extraction. The InRFNet model evaluation results show high training (99%) and validation (96%) accuracy. The performance metrics of the InRFNet model are Sensitivity (94.48%), Specificity (97.87%), Recall (96.34%), F1-score (96.33%), kappa score (94.10%), ROC-AUC (99.41%), mean square error (0.04), and the total number of parameters (33100).