z-logo
open-access-imgOpen Access
Modeling of Supervised Machine Learning using Mechanism of Quantum Computing.
Author(s) -
Mukta Nivelkar,
Sunil Bhirud
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2161/1/012023
Subject(s) - quantum machine learning , quantum computer , computer science , quantum algorithm , qubit , artificial intelligence , theoretical computer science , quantum technology , open quantum system , quantum , machine learning , physics , quantum mechanics
Mechanism of quantum computing helps to propose several task of machine learning in quantum technology. Quantum computing is enriched with quantum mechanics such as superposition and entanglement for making new standard of computation which will be far different than classical computer. Qubit is sole of quantum technology and help to use quantum mechanism for several tasks. Tasks which are non-computable by classical machine can be solved by quantum technology and these tasks are classically hard to compute and categorised as complex computations. Machine learning on classical models is very well set but it has more computational requirements based on complex and high-volume data processing. Supervised machine learning modelling using quantum computing deals with feature selection, parameter encoding and parameterized circuit formation. This paper highlights on integration of quantum computation and machine learning which will make sense on quantum machine learning modeling. Modelling of quantum parameterized circuit, Quantum feature set design and implementation for sample data is discussed. Supervised machine learning using quantum mechanism such as superposition and entanglement are articulated. Quantum machine learning helps to enhance the various classical machine learning methods for better analysis and prediction using complex measurement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here