z-logo
open-access-imgOpen Access
Computational tool for learning electrostatic physics through the development of a disruptive methodology
Author(s) -
L E Ramírez-Carvajal,
K Puerto-López,
S Castro-Casadiego
Publication year - 2022
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2159/1/012005
Subject(s) - computer science , development (topology) , dynamism , interactivity , agile software development , gauss , computational science , physics , mathematics , software engineering , quantum mechanics , mathematical analysis , multimedia
A computational tool for learning electrostatic physics is presented through the development of a disruptive methodology. The tool allows the analysis of case studies based on Coulomb’s law, Gauss’s law, Poisson’s equation, and Laplace’s equation with boundary value. The tool was tested using reference exercises for each case study, making use of quantitative and qualitative comparative analysis between the traditional mathematical development and the computational tool. Errors were measured using Likert scale. The quantitative results showed errors of less than 1.8% in all the cases studied, concluding that the tool is effective. The qualitative results showed that the methodology allows a better development of the electrostatics learning process, dynamizing the study of complex topics such as electromagnetic physics theories through interactivity and technological resources, in addition to having a theoretical module developed using agile methodologies that provide dynamism and an intuitive environment to the interface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here