
Simulation of Nuclear Recoils due to Supernova Neutrino-induced Neutrons in Liquid Xenon Detectors
Author(s) -
S. Ghosh,
Abhijit Bandyopadhyay,
Pijushpani Bhattacharjee,
Sovan Chakraborty,
Kamales Kar,
S. Saha
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2156/1/012135
Subject(s) - physics , neutrino , xenon , supernova , nuclear physics , recoil , neutron , scattering , dark matter , neutrino detector , electron , particle physics , astrophysics , neutrino oscillation , optics
Neutrinos from supernova (SN) bursts can give rise to detectable number of nuclear recoil (NR) events through the coherent elastic neutrino-nucleus scattering (CEυNS) process in large scale liquid xenon detectors designed for direct dark matter search, depending on the SN progenitor mass and distance. Here we show that in addition to the direct NR events due to CEvNS process, the SN neutrinos can give rise to additional nuclear recoils due to the elastic scattering of neutrons produced through inelastic interaction of the neutrinos with the xenon nuclei. We find that the contribution of the supernova neutrino-induced neutrons (υIn) can significantly modify the total xenon NR spectrum at large recoil energies compared to that expected from the CEυNS process alone. Moreover, for recoil energies ≳ 20 keV, dominant contribution is obtained from the (υIn) events. We numerically calculate the observable S1 and S2 signals due to both CEvNS and vIn processes for a typical liquid xenon based detector, accounting for the multiple scattering effects of the neutrons in the case of υIn, and find that sufficiently large signal events, those with S1≳50 photo-electrons (PE) and S2≳2300 PE, come mainly from the υI n scatterings.