
20-inch photomultiplier tube timing study for JUNO
Author(s) -
Narongkiat Rodphai,
Z. Wang,
N. Suwonjandee,
B. Asavapibhop
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2145/1/012017
Subject(s) - dynode , photomultiplier , scintillator , physics , neutrino , detector , optics , neutrino oscillation , nuclear physics , neutrino detector
Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator neutrino detector now under construction at Jiangmen, Guangdong, China for determination of neutrino mass ordering with 3% energy resolution at 1 MeV, a precise measurement of neutrino oscillation parameters, and other neutrino physics. The central detector is made up of a 35.4-meter diameter acrylic sphere which contains 20 kton of liquid scintillator and is surrounded by about 18k 20-inch photomultiplier tubes (PMTs). The PMTs performance is one of the JUNO’s key successes to reach the high resolution goal. In this study, the PMT characteristic and its timing related responses were determined via the PMT generated signals, extracted from the PMT in a scanning station system. About 2,400 of micro-channel plate PMTs (MCP-PMTs) and dynode PMTs were analyzed for their responses with LED source such as rise time, fall time, transit time spread (TTS), gain, etc., which relate to photon incident on different positions of PMT’s glass surface. Furthermore, we also observed the fluctuation of PMT performance under magnetic field which can decrease the PMT photon detection efficiency (PDE).