z-logo
open-access-imgOpen Access
An Integration Model for Text Classification using Graph Convolutional Network and BERT
Author(s) -
Bingxin Xue,
Changan Zhu,
Xuan Wang,
Weifeng Zhu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2137/1/012052
Subject(s) - computer science , wordnet , artificial intelligence , sentence , graph , encoder , adjacency matrix , natural language processing , adjacency list , theoretical computer science , algorithm , operating system
Recently, Graph Convolutional Neural Network (GCN) is widely used in text classification tasks, and has effectively completed tasks that are considered to have a rich relational structure. However, due to the sparse adjacency matrix constructed by GCN, GCN cannot make full use of context-dependent information in text classification, and cannot capture local information. The Bidirectional Encoder Representation from Transformers (BERT) has been shown to have the ability to capture the contextual information in a sentence or document, but its ability to capture global information about the vocabulary of a language is relatively limited. The latter is the advantage of GCN. Therefore, in this paper, Mutual Graph Convolution Networks (MGCN) is proposed to solve the above problems. It introduces semantic dictionary (WordNet), dependency and BERT. MGCN uses dependency to solve the problem of context dependence and WordNet to obtain more semantic information. Then the local information generated by BERT and the global information generated by GCN are interacted through the attention mechanism, so that they can influence each other and improve the classification effect of the model. The experimental results show that our model is more effective than previous research reports on three text classification data sets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here