
Dynamic Analysis of Blast Furnace Sensor Data using Cross-recurrence Quantification Strategies
Author(s) -
Xiaochuan Sun,
B Wei,
Jinghong Gao,
Jianxun Fu,
Z G Li
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2132/1/012024
Subject(s) - production (economics) , blast furnace , blast furnace gas , product (mathematics) , engineering , economics , mathematics , metallurgy , materials science , geometry , macroeconomics
This paper investigates impact degree of blast furnace related elements towards blast furnace gas (BFG) production. BFG is a by-product in the steel industry, which is one of the enterprise’s most essential energy resources. While because multiple factors affect BFG production it has characteristics of large fluctuations. Most works focus on finding a satisfactory method or improving the accuracy of existing methods to predict BFG production. There are no special studies on the factors that affect the production of BFG. Finding the elements that affect BFG production is benefit to production of BFG, which has a significance in economy. We propose a novel framework, combining cross recurrence plot (CRP) and cross recurrence quantification analysis (CRQA). Moreover, it supplies a general method to convert time series of BFG related data into high-dimensional space. This is the first analytical framework that attempts to reveal the inherent dynamic similarities of blast furnace gas-related elements. The experimental results demonstrate that this framework can realize the visualization of the time series. In addition, the results also identify the factor that has the greatest impact on blast furnace gas production by quantitative analysis.