z-logo
open-access-imgOpen Access
Single object tracking algorithm in occlusion scene based on improved ECO
Author(s) -
Guorong Xie,
RunHao Jiang,
Yi Qu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2132/1/012010
Subject(s) - artificial intelligence , computer science , feature (linguistics) , tracking (education) , object (grammar) , sample (material) , channel (broadcasting) , video tracking , backbone network , computer vision , pattern recognition (psychology) , algorithm , psychology , computer network , pedagogy , philosophy , linguistics , chemistry , chromatography
To alleviate the occlusion problem in a single object tracking scene, this paper proposes an ECO-MHDU object tracking algorithm with a more powerful anti-occlusion performance based on the ECO tracker. The algorithm first uses the pre-trained MobileNetV3 lightweight backbone network on the ImageNet dataset to replace the ResNet network in the ECO to increase the speed of the algorithm to obtain the shallow and deep feature information of the image, while effectively using the attention mechanism in the MobileNetV3 network to strengthen the algorithm’s ability to extract target features; secondly, use the DropBlock operation on the acquired feature map to generate a random continuous mask on the feature map channel to improve the algorithm’s learning of the global robust spatial structure information; finally, a confidence update strategy is introduced into the GMM sample generation space. To improve the quality of training samples, unreliable tracking states such as confidence detection and occlusion are designed to avoid updating the sample space with damaging information. Compared with the ECO algorithm, the ECO-MHDU algorithm proposed in this paper has a success rate of 68.0% on the occlusion attributes of the OTB100 dataset, which is 2.3% higher than the ECO algorithm, and the ECO-MHDU algorithm also showed the best performance on the entire dataset sequence, with a success rate of 69.3%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here