z-logo
open-access-imgOpen Access
The electronic structure of the atom as a classification criterion of mineral technogenic waste
Author(s) -
Antonina Sakharova,
L.L. Maslennikova
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2131/4/042095
Subject(s) - raw material , ceramic , mineral , atom (system on chip) , materials science , environmental science , waste management , metallurgy , chemistry , engineering , organic chemistry , embedded system
Today, the total scientific classification of solid industrial waste is absent because of their diversity. The task of universal of mineral technogenic waste recycling is complicated by the difference in their composition. The nature of the chemical elements that make up building materials is always taken into account to predict their properties. In this regard, the purpose of the study was to determine the classification characteristics of mineral technogenic waste recycling on the basis of natural-scientific ideas about the electronic structure of the atom. Studies were conducted on model systems with ceramic oxides entering s-, p-, d- elements in ceramic matrix to test the impact of the electronic structure of the mineral waste cation on operational characteristics of building materials. The experimental results showed that the strength of the samples changes in the series s → p → d of the belonging of the introduced oxide cation to the electronic family. Additionally, such an indicator as the energy-gap width was used to study the nature of the contacting solid phases. It is possible to identify which substances in technogenic raw materials have the greatest effect on the performance of the material in value of the energy-gap width.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here