
Mathematical modeling and multiobjective optimization complex catalyst hydroalumination reaction of olefins with diisobutylaluminium hydride
Author(s) -
К. Ф. Коледина,
I. M. Gubaydullin,
С. Н. Коледин
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2131/2/022015
Subject(s) - hydride , yield (engineering) , catalysis , chemistry , ordinary differential equation , variable (mathematics) , thermodynamics , differential equation , mathematics , organic chemistry , physics , mathematical analysis , hydrogen
A mathematical model for the catalyst hydroalumination reaction of olefins with diisobutylaluminium hydride has been developed. In solving the direct kinetic problem applies multi-step method Gere variable order. When solving systems of ordinary differential equations in chemical kinetics, it is necessary to fulfill the balance relations at each sampling point. That ensures the fulfillment of the law of conservation of matter and the convergence of the numerical method. For the catalytic reaction of hydroalumination olefins in the presence of the organoaluminum compound diisobutylaluminum hydride, the problem of multicriteria optimization reaction conditions was solved based on a detailed kinetic model. The solutions found make it possible to optimally select the reaction conditions to achieve the maximum yield of target products, which can be based on the subsequent introduction of the laboratory reaction into production.