
Test stand for pulsed jet actuator command and characterization
Author(s) -
Wit Stryczniewicz,
W. Stalewski
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2130/1/012031
Subject(s) - test bench , nozzle , actuator , wind tunnel , computational fluid dynamics , volumetric flow rate , controller (irrigation) , anemometer , mass flow rate , jet (fluid) , flow (mathematics) , simulation , mechanical engineering , materials science , automotive engineering , mechanics , wind speed , engineering , aerospace engineering , electrical engineering , physics , meteorology , agronomy , biology
The paper presents a test stand for characterization of a new design of a Pulsed Jet Actuator. The aim of the work was to characterize the performance of the PJA in terms of air parameters in the air supply line and velocity at the PJA outlet. To perform a detailed characterization of the system performance, the test bench comprised: a pressure reductor, a mass flow rate controller, a mass flow rate meter, a pressure sensor, a fast pressure sensor, a flow temperature sensor and a Constant Temperature Anemometer. The PJA was commanded by a real time controller with Field Programmed Gate Array architecture. The experimental results show good agreement with the results of Computational Fluid Dynamics simulations performed at the design stage of the PJA. It has been found that the flow parameters at the PJA nozzle outlet match the design goals. The developed bench testing procedures will be used for silent conditions tests of the PJA system integrated into a leading edge of a wind tunnel model.