
Efficient Brain Tumor Detection Based on Deep Learning Models
Author(s) -
Mohamed R. Shoaib,
Mohamed Elshamy,
Taha E. Taha,
Adel S. ElFishawy,
Fathi E. Abd ElSamie
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2128/1/012012
Subject(s) - convolutional neural network , computer science , artificial intelligence , brain tumor , deep learning , transfer of learning , pattern recognition (psychology) , magnetic resonance imaging , artificial neural network , machine learning , radiology , pathology , medicine
Brain tumor is an acute cancerous disease that results from abnormal and uncontrollable cell division. Brain tumors are classified via biopsy, which is not normally done before the brain ultimate surgery. Recent advances and improvements in deep learning technology helped the health industry in getting accurate disease diagnosis. In this paper, a Convolutional Neural Network (CNN) is adopted with image pre-processing to classify brain Magnetic Resonance (MR) images into four classes: glioma tumor, meningioma tumor, pituitary tumor and normal patients, is provided. We use a transfer learning model, a CNN-based model that is designed from scratch, a pre-trained inceptionresnetv2 model and a pre-trained inceptionv3 model. The performance of the four proposed models is tested using evaluation metrics including accuracy, sensitivity, specificity, precision, F1_score, Matthew’s correlation coefficient, error, kappa and false positive rate. The obtained results show that the two proposed models are very effective in achieving accuracies of 93.15% and 91.24% for the transfer learning model and BRAIN-TUMOR-net based on CNN, respectively. The inceptionresnetv2 model achieves an accuracy of 86.80% and the inceptionv3 model achieves an accuracy of 85.34%. Practical implementation of the proposed models is presented.