z-logo
open-access-imgOpen Access
Numerical simulation of deflagration in hydrogen-air gas mixes
Author(s) -
S. N. Martyushov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2124/1/012011
Subject(s) - deflagration , thermodynamics , chemistry , hydrogen , detonation , branching (polymer chemistry) , mechanics , physics , organic chemistry , explosive material
Verification of validity of different manifolds of chemical reactions and coefficients in Arrhenius formulae was made for numerical simulation of deflagration appearing in hydrogen-air gas mixes. Kinetic model of branching chain reaction was tested for initial stage of detonation of this kind of mixes. One dimensional numerical simulations of deflagration initiation where provided for small closed heat isolated region. The next problem was solved numerically:in small closed volume, initially filled by hydrogen-air mix with atmospheric meanings of gas dynamics parameters at moment t =0 temperature rising till meaning, at which reaction of deflagration should begin. Numerical experiment consist of calculation of thermodynamics parameters of gas mix in small isolated volume. Meanings of molar concentration of components of gas mix where calculated by implicit numerical method of Gir for numerical decision. Calculation where provided till zero concentration of hydrogen or not appearing of deflagration at all. Characteristic feature of hydrogen-air gas mix deflagration is appearance of sudden explosion after long period of induction. In this induction period grows of radicals H, O and OH appears. Mass of radicals, nevertheless stay small, and one radical component transverse to the others. This explosion mechanism is branching chain reaction introduced by N.N.Semenov. In agreement with branching chain reaction theory during process of branching chain reaction radicals H, O, OH many times initiates reaction with other components of the mix. Nevertheless mass of radical components preserve small during the reaction, them almost fully disappeared in every time of the process. That’s why method of “quasi - stationary concentration” is treated to components O, OH (velocity of changing of this components concentration is equal to zero). For concentration of component H one simplified differential equation is treated . Speed of changing H essentially grater then speed of changing “slow” components H 2 , O 2 , H 2 O , that’s why equation for H should be solved separately. Algorithm was developed for numerical simulation of hydrogen-air mixes on the basis of theory branching chain reactions. Calculations provided demonstrate applicability of developed algorithm for numerical simulations of initial stage of deflagration of hydrogen-air mixes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here