
A Fiber Vibration Signal Identification Method Based on the Combination of EWT-FE and LSTM
Author(s) -
Xin Zhang,
Qingmo Ja,
Saisai Ruan,
Qinyong Hu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2112/1/012020
Subject(s) - computer science , feature extraction , pattern recognition (psychology) , modal , artificial intelligence , intrusion detection system , aliasing , signal (programming language) , feature (linguistics) , wavelet , linguistics , chemistry , philosophy , undersampling , polymer chemistry , programming language
As the optical fiber perimeter security system is widely used in real life, how to identify the types of intrusion events in a timely and effective manner is becoming a major research hotspot. At present, in this field, various signal feature extraction algorithms are usually used to extract intrusion signal features to form feature vectors, and then machine learning algorithms are used to classify the feature vectors to achieve the role of identifying the types of intrusion events. As a common signal feature extraction algorithm, the EMD algorithm has been widely used in the feature extraction of various vibration signals, but it will have the problem of modal aliasing and affect the feature extraction effect of the signal. Therefore, EWT, VMD and other algorithms have been successively used proposed to improve modal aliasing. On the basis of fully comparing the existing algorithms, this paper proposes a fiber vibration signal identification method that decomposes the signal through the empirical wavelet transform (EWT) algorithm and then extracts the fuzzy entropy (FE) of each component, and uses LSTM for classification. The final experiment shows that the method can identify four kinds of fiber intrusion signals in time and effectively, with an average recognition accuracy rate of 97.87%, especially for flap and knock recognition rate of 100%.