z-logo
open-access-imgOpen Access
Intelligent alarm data noise reduction for power systems based on singular value decomposition
Author(s) -
Chen Chen,
Hongren Man,
Liu Xiu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2108/1/012074
Subject(s) - noise (video) , noise reduction , computer science , singular value decomposition , noise measurement , gradient noise , value noise , algorithm , artificial intelligence , noise floor , image (mathematics)
The noise types of power system intelligent alarm data are complex. When reducing the intelligent alarm data, the profile noise statistics of the noise data are large, resulting in the actual noise reduction value is too small. To solve this problem, a power system intelligent alarm data noise reduction method based on singular value decomposition is designed. The selected normalized decomposition matrix iteratively processes the original matrix, the singular value decomposes the power system alarm data, sets an estimation quantity within the paradigm of the alarm data, controls the noise profile noise statistics, characterizes the noise alarm data structure, uses the SC algorithm to process the cluster basis vectors in the noise data structure, and constructs a repeated iterative convergence process to realize intelligent data noise reduction processing. The original alarm data within a known power system is used as test data, the power system alarm window is set, and the power system alarm data singular values are circled. The data mining-based alarm data noise reduction method, the regularized filter-based alarm data noise reduction method and the designed data noise reduction method are applied to the noise reduction process, and the results show that the designed data noise reduction method has the largest noise value and the best noise reduction effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here