
Characteristics and Applications of Superconducting Magnetic Energy Storage
Author(s) -
YuYao Huang,
Ruokun Yi,
Yilan Shen,
Zhirui Zeng
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2108/1/012038
Subject(s) - superconducting magnetic energy storage , energy storage , energy conservation , process engineering , efficient energy use , superconducting magnet , power (physics) , electrical engineering , engineering physics , environmental science , computer science , environmental economics , magnet , engineering , physics , quantum mechanics , economics
Energy storage is always a significant issue in multiple fields, such as resources, technology, and environmental conservation. Among various energy storage methods, one technology has extremely high energy efficiency, achieving up to 100%. Superconducting magnetic energy storage (SMES) is a device that utilizes magnets made of superconducting materials. Outstanding power efficiency made this technology attractive in society. This study evaluates the SMES from multiple aspects according to published articles and data. The article introduces the benefits of this technology, including short discharge time, large power density, and long service life. On the other hand, challenges are proposed for future study. The high energy requirement of the cooling system and carbon emissions are some of the drawbacks of SMES. It’s found that SMES has been put in use in many fields, such as thermal power generation and power grid. SMES can reduce much waste of power in the energy system. The article analyses superconducting magnetic energy storage technology and gives directions for future study.